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Part 1 Introduction
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* Human brain is known as the most sophisticated

system in the world
— 101 neurons(f#4: JT)
— 1035 synaptic linkages( 2 fili 14 1)

— Complex structure connection and functional
connection
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* Brain anatomical structure
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* Neuroimaging lead the way to study the human
brain, it includes various techniques:
— Magnetic resonance imaging(MRI, fMRI, DTI)

— Computed axial tomography(CT)

— Electroencephalogram(EEG)
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* Neuroimaging towards multidisciplinary sciences

Statistics

Cognitive Science Neuroscience

rain research!

Data mining isf
\Computer Science

Biology ——

AN

Pathematology -~ } Physics
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e Whatis MRI?

Magnetic resonance imaging (MRI) is a medical
imaging technique which provides us a Noninvasive (F1%
) and intuitive way to investigate the anatomy (f# 1))
and physiology of the body
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* MRI images look like this
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* Advantages of MRI

— Nonintrusive (E1Z A1)
— No ionising radiation (F E #55]) damage

— Voxel (=4£1% %) level analysis

— Multiple approachs to construct image (T1, T2,
proton density...)
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e What can we do about MRI?
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 fMRI is a category of special MRI which allows to
study brain’s functional connection

* Detecting changes over time to construct
functional connection pattern
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« BOLD fMRI(Blood Oxygenation Level Dependent)

— Blood Oxygenation level changes relating to neuronal
activities

— Oxygenated and deoxygenated hemoglobin (L2155
) has different effect on imaging
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« BOLD fMRI(Blood Oxygenation Level Dependent)

5 10 15 20

hemodyamic response function
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Part 2 Fingerprint: brain connectivity
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* Biological characteristics
— Fingerprint
— Human face

— lris (M )

— Retina
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* To quantify brain structure, a brain atlas
(defined on Yale data set) consisting of 268
nodes is used in this study

\
Brain network with 268 nodes
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* Connectivity matrices: 268 x 268 matrices,
calculated by Pearson correlation coefficient

* Similarity measurement: Pearson correlation
coefficient between vectors of edge values taken
from the target matrix and database matrices
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268 nodes are further grouped into eight
networks

1. Medial frontal 5. Motor
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e Data for this study was collected in six fMRI
sessions in two different days for each subject

Day 1

R1

WM

|

|

Mt

R2

|

Nav 2

Em

R1: resting-state
WM: working-memory task
Mt: motor task

R2: resting-state
Lg: language task

Em: emotion task
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* |dentification performed across pairs of scans
taken from different days

R1 WM Mt
R2 Lg Em
\ Nav 2 J
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* |dentification process is to find the maximally
similar matrix in database compared against
target

Database matrices )

Subj 1 Subj 2 Subj N

Target "= {
magix E ID* = argmax(ir., o ..., y})
By
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* Experiment result
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* Experiment result

— Combination of network 1 and 2 shows high
performance

Testing Database

Frontoparietal networks

Data base
Bunsa )
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 To find out edge’s contribution to identification,
used two parameter:

— DP: ability to distinguish subjects

— @: quantifies the consistency of a connection
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1 g 012 Highly unique(DP, top, red)

. : and highly consistent(,
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* Longer time courses better preserved individual
characteristics in connectivity profiles
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* Fluid intelligence (gF): the capacity for on-the-
spot reasoning to discern patterns and solve
problems independently of acquired knowledge

* Regression and leave-one-out-cross-validation
(LOOCV) was used for the prediction analysis
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e Feature selection

— Pearson correlation was performed between each edge and
gF score across subjects in the training set

— Edges were separated into two group: positively and
negatively correlated with gF
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* Model building

— network strength:

[Positive feature network strength]; = Zcijmgf)
]

[Negative feature network strength]; = 2 Cijmz(]'—)
3,1

c: individual s’s connectivity matrix

m®): positive correlation matrices between edges and gF m*): negative
correlation matrices between edges and gF




I@ T s

Cognitive behavior prediction  \&/ v vining Lab

* Linear regression

— Network strength as the explanatory variable and, gF as the
dependent variable

[Predicted gF score]’®® = a* (Network strength)P°® + b

[Predicted gF score]"“® = a* (Network strength)"® + b
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* Experiment result
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Negative features
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Network

a: analysis comparing predicted and observed gF with whole brain
b: distribution of positive and negative feature in different network
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* Experiment result

Cc Frontoparietal networks d
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c: analysis comparing predicted and observed gF with Frontoparietal networks
b: r value of each model in LOOCV analysis
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* Brain altas parcellation scheme have effect on

identification accuracy

* Longer time series improve identification
accuracy

 Task to task, task to rest session identifications
are more challenging, additional information
improves identification accuracy
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* |Individual’s functional brain connectivity profile
is both unique and reliable, similarly to a

fingerprint

* Connectivity profiles can be used to predict the
fundamental cognitive trait of fluid intelligence



